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We compute the first-order correction to the correlation functions of the sta-
tionary state of a stochastically forced harmonic chain out of equilibrium when
a small on-site anharmonic potential is added. This is achieved by deriving a
suitable formula for the covariance matrix of the invariant state. We find that
the first-order correction of the heat current does not depend on the size of the
system. Second, the temperature profile is linear when the harmonic part of the
on-site potential is zero. The sign of the gradient of the profile, however, is
opposite to the sign of the temperature difference of the two heat baths.

KEY WORDS: Heat conduction; anharmonic chains; nonequilibrium steady
states; Fourier law.

1. INTRODUCTION

The goal of this paper is to begin a perturbative analysis of invariant
probability measures arising in the context of nonequilibrium statistical
mechanics. As a model at hand, we will consider a Hamiltonian chain of N
oscillators interacting through nearest-neighbour interactions, coupled at
its boundaries to stochastic heat baths of different temperatures, and that
we will perturb by a small anharmonic (quartic) on-site interaction. The
covariance of the stationary state in the purely harmonic case has been
computed in refs. 11 and 13. For anharmonic cases, almost nothing is
known about the physical content of the stationary state, except results
about the positivity of entropy production and validity of linear response
theory. (7) In this paper, we consider the model of ref. 13 with an additional



quartic on-site potential, as described in section 4. This model has been
numerically studied in refs. 1 and 9 and shown to satisfy Fourier law. It is
to be contrasted with the so-called FPU model in one dimension where the
nonlinearity is included in the interaction between nearest-neighbours. In
that case, Fourier law is not observed.

It is a natural idea to attempt to understand the physical properties
of the stationary state by performing a perturbative analysis. Such an
approach, based on the phonon picture, has been exploited by physicists to
tackle the Fourier law, see ref. 2 for a classical exposition. In particular, the
Peierls theory seems successful in computing the thermal conductivity and
its thermal and dimensional dependence. The Peierls approach assumes
from the beginning the existence of an infinite nonequilibrium state where
local temperature equilibrium is expected to hold. It is also based on
several implicit assumptions, such as the validity of a Boltzmann equation
for phonons. In this paper, we adopt a different approach and begin a
rigorous perturbative analysis of a finite (although taking N large will
have some simplifying features) anharmonic chain. Our starting point is
a formula for the correlation functions of the stationary measure. This
formula allows us to derive (matrix) equations for the first-order correc-
tion. The relationship between our approach by stationary nonequilibrium
states (SNS) and the Peierls approach is, at this stage, far from clear.
A first interesting step would be to achieve some understanding of the
equivalence of the definition of the thermal conductivity by the Green–
Kubo formula and its definition in the SNS approach as, roughly speaking,
the ratio of the heat current and the temperature gradient.

The main obstacle to developing a perturbation expansion of SNS’s
is that, in contrast to the equilibrium case, no explicit formula for the
invariant density is known. Moreover, the fact that the relevant models are
degenerate in a stochastic sense makes it laborious to obtain a systematic
perturbation expansion starting from the equations of motion. We will
derive and use a formula for the two-point correlation functions of invari-
ant states, which holds under the assumption of L1-convergence of the
finite-time correlation functions to those of the (unique) invariant measure.
We emphasize that the validity of the formula is not restricted to the con-
crete problem of the anharmonic chain considered here. It may prove
useful whenever the invariant measure is not explicitly known, in particular
in the context of transport phenomena modelized by hypoelliptic stochastic
processes. We also remark that the form of the formula for the covariance
is very similar to, and provides a lower bound on, the expectation of the
Malliavin matrix.

Our main result concerning the heat current is that its first-order
correction remains uniformly bounded as the number of oscillators goes to
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infinity. Regarding the significance of this result, we recall that the heat
current in the harmonic case is independent of the length of the chain. (11, 13)

On the other hand, it is expected to be inversely proportional to the length
of the chain in the anharmonic case, as it should if Fourier law holds,
which numerical studies strongly suggest, see, e.g., refs. 1 and 9. One thus
expects the heat current in the harmonic limit to develop a singularity as
the length of the chain increases. In this respect, our result shows that such
a singularity does not manifest itself in a first-order perturbative analysis.
Our second result concerns the first-order correction to the temperature
profile. It is exponentially decaying in the bulk of the chain, with a decay
rate that depends on the strength of the harmonic part of the on-site
potential. When this strength vanishes, the correction to the temperature
profile is linear. However, the sign is ‘‘wrong,’’ in the sense that the linear
profile has the lowest temperature near the hottest bath and the highest
temperature near the coldest bath. This is analogous to the result of ref. 13,
where the temperature profile is also oriented in the ‘‘wrong’’ direction.
The main difference is of course that in ref. 13, the temperature profile is
exponentially decaying. Although we have no satisfactory explanation for
this surprising behaviour, we briefly comment on this point in the conclud-
ing section. Another feature of our solution is that the temperature profile
is shifted downwards, in the sense that the temperature at the middle point
of the chain is lower than the arithmetic mean of the temperatures of the
heat baths.

The remainder of this paper is organized as follows. In Section 2, we
specify the basic set-up for the type of anharmonic chains we will consider.
Section 3 is devoted to the derivation of our basic formula for the covari-
ance. In Section 4, we derive the matrix equations for the first-order
corrections to the harmonic case. Sections 5 and 6 are devoted to the
resolution of these equations. This is done by generalizing the methods
of refs. 11 and 13. Finally, some concluding comments are collected in
Section 7.

2. A MODEL FOR HEAT CONDUCTION

In order to explain the behaviour of the thermal conductivity in crys-
talline solids, one often modelizes the solid by a chain (or lattice in higher
dimension) whose ends are coupled to heat baths maintained at different
temperatures. The coupling can be taken stochastic and more precisely of
Langevin type. In one dimension, the set-up is as follows. At each site of a
lattice {1,..., N} is attached a particle of momentum pi and position qi .
The dynamics is Hamiltonian in the bulk and stochastic through the
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Langevin coupling to heat baths at the boundaries. The Hamiltonian is of
the form,

H(p
¯

, q
¯

)= C
N

i=1
( 1

2 p2
i +V(qi))+ C

N

i=2
U(qi − qi − 1)+U(q1)+U(qN). (2.1)

Specific choices for the potentials U and V will be specified below. The
equations of motions are given by,

dqi=pi dt, i=1,..., N, (2.2)

dpi= −
“H
“qi

(p
¯

, q
¯

) dt, i=2,..., N − 1, (2.3)

and,

dp1= −
“H
“q1

(p
¯

, q
¯

) dt − cp1 dt+`2ckT1 dwl, (2.4)

dpN= −
“H
“qN

(p
¯

, q
¯

) dt − cpN dt+`2ckTN dwr. (2.5)

T1 and TN stand for the temperature of the left and right reservoirs, respec-
tively, whereas wl and wr are two independent standard Wiener processes.

It is an easy fact to check that when T1=TN=T=b−1, the measure
on the configuration space R2N whose density with respect to the Lebesgue
measure is given by

r(p
¯

, q
¯

)=Z−1e−bH(p
¯

, q
¯

) (2.6)

is invariant (stationary) for the stochastic dynamics defined above. Expli-
citly, one can check that for L the generator of the dynamics and any
function f in its domain,

F Lfr(p
¯

, q
¯

) dp
¯

dq
¯

=0. (2.7)

In the case of two different temperatures, existence, uniqueness and expo-
nential convergence to an unique invariant state has been established under
fairly general conditions on the potentials U and V. (4, 6, 7, 12) In the case of
harmonic coupling, the covariance of the stationary state has been exactly
computed in refs. 11 and 13.
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An essential ingredient of the proof of the uniqueness is the fact that
the system satisfies the so-called Hörmander condition. This condition
implies that the noise spreads in a sufficiently good way through the
system, so that the transition probabilities have smooth densities. This
property is encapsulated in the non-degeneracy of the Malliavin matrix
associated to the stochastic system under study. As the noise represents the
injection of energy into the system, it is natural to enquire about the rela-
tionship between the Malliavin matrix and the correlation functions of the
stationary state. This might provide a way to tackle the description of the
stationary state when its density is not explicitly known. Indeed, from a
physical point of view, the central question, once uniqueness has been
established, is to compute the energy spectrum and correlation functions of
the stationary state and ultimately, to establish the validity of the Fourier
law. As mentioned above, the case of a harmonic chain has been com-
pletely and explicitly solved. The main feature of the solution is a flat tem-
perature profile and an associated infinite thermal conductivity.

The basic idea in order to perform a perturbation theory of the non-
equilibrium stationary state is to write the two-point correlation function of
the stationary measure under a ‘‘Malliavin’’ form, similar to the form
derived by Nakazawa in the Gaussian harmonic case. (11)

3. THE MALLIAVIN MATRIX AND THE COVARIANCE MATRIX OF

THE STATIONARY MEASURE

We consider now a general system of stochastic equations. Denote by
xt ¥ Rd the solution of the stochastic differential equation,

dxt=X0(xt) dt+ C
n

k=1
Xk(xt) dwk(t) (3.1)

with initial condition x0=x, where the wk’s are n independent one-dimen-
sional Brownian motions and Xl, l=0,..., n, are C. vector fields over Rd

satisfying for any multi-index a,

||“aXl(x)|| [ C(1+||x||Ka) (3.2)

for some Ka > 0. We note that solutions to such equations are in general
not ensured to exist globally. In the sequel, we restrict ourselves to the
following situations.

Assumption 3.1. For all x ¥ Rd, Eq. (3.1) has a unique strong
solution xt, t > 0. This solution has finite moments of all order: for all
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p \ 1, T < ., and x ¥ Rd, there exists a constant C=C(x, p, T) < . such
that for 0 [ t [ T,

Ex(||xt ||p) [ C. (3.3)

When in need of emphasizing the dependence of the solution to
(3.1) on the initial condition x and the realization of the d-dimensional
Brownian motion w in the interval [0, t], we shall write it as xt(x, w([0, t])).
We denote by P t the associated semigroup,

P tf(x)=Ex(f(xt)) — F f(xt(x, w([0, t]))) dP(w([0, t]), (3.4)

where P is the d-dimensional Wiener measure, by A the generator of the
semigroup, and by L the associated second order differential operator,

L= C
d

i=1
X i

0 “i+ C
d

i, j=1
aij “i“j, (3.5)

where, with é denoting the tensor product,

a=1
2 C

n

k=1
Xk é Xk. (3.6)

From Assumption 3.1 on the process solution xt and the bounds (3.2)
for the vector fields Xl, it follows that for each t and w[0, t], the map
x W xt(x, w[0, t]) is C. on Rd with derivatives of all orders satisfying the
stochastic differential equation obtained from (3.1) by formal differentia-
tion. Furthermore, for all multi-index a, p \ 1, and t \ 0,

E(||“axt(x, · )||p) < .. (3.7)

In the sequel, we will denote Ut(x, w[0, t])=Dxt(x, w[0, t]), where DX
denotes the Jacobian matrix of a vector field X on Rd. The matrix Ut is the
linearized flow and it solves the equation, with initial condition U0=1,

dUt=DX0(xt) Ut dt+ C
n

k=1
DXk(xt) Ut dwk(t). (3.8)

Below, ExUt denotes > Ut(x, w[0, t]) dP(w[0, t]).
Let us now assume the existence of an invariant probability measure m

for the process solution xt of (3.1) and consider the covariance matrix at
time t,

Ct(x) — Ex(xt é xt) − Ex xt é Ex xt. (3.9)
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The following result is the starting point of the perturbative analysis per-
formed in subsequent sections. It provides an expression for m(Ct) in
terms of the linearized flow Ut, where m(f ) is a shorthand notation for
>Rd f(x) dm(x).

Proposition 3.2. Suppose that the bounds (3.2) and Assumption 3.1
are satisfied. Suppose in addition that the invariant measure m for the
process solution xt of (3.1) is such that the functions x W Ex x i

s, x W

LEx x i
s, and x W aij(x) Ex U jl

s , belong to L2(Rd, dm) for all i, j, l, and s [ t.
Then,

m(Ct)=F
t

0
ds C

n

k=1
m(E.UsXk(.) é E.UsXk(.)). (3.10)

Proof. We will show below that the map s W m(E.xs é E.xs) is dif-
ferentiable, with

d
ds

m(E.xs é E.xs)=− C
n

k=1
m(E.UsXk(.) é E.UsXk(.)). (3.11)

Identity (3.10) thus follows from the invariance of the measure m, since

m(Ct)=m(E.(xt é xt)) − m(E.xt é E.xt) (3.12)

=m(x é x) − m(E.xt é E.xt) (3.13)

= − F
t

0
ds

d
ds

m(E.xs é E.xs). (3.14)

To obtain (3.11), we first note that (3.3) implies that any function
f ¥ C2(Rd) with first derivatives of at most polynomial growth is in the
domain of the generator A with Af=Lf. Similarly, one easily checks
that for such f, (3.7) implies A(Pt f )=L(Pt f ). Therefore, Kolmogorov
equation yields d

ds (Ex xs é Ex xs)=LEx xs é Ex xs+Ex xs é LEx xs, which,
by Hölder inequality and our assumptions, belongs to L1(Rd, dm). Thus,

d
ds

m(E.xs é E.xs)=m(LE.xs é E.xs+E.xs é LE.xs). (3.15)

Let us next define for f, g ¥ C2(Rd),

C(f, g) — L(fg) − fLg − gLf, (3.16)
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which reads

C(f, g)=2 C
d

i, j=1
aij “i f “j g. (3.17)

Since it follows from (3.7) that “iExx j
s=ExU ji

s , our assumptions imply as
above that C(E.x i

s, E.x j
s) ¥ L1(Rd, dm) for all i, j. It follows in particular

that L(E.xs é E.xs) ¥ L1(Rd, dm). Because of the invariance of m (which
implies m(Lf )=0), we are thus free to subtract from the m-expectation on
the right hand side of (3.15) a term L(E.xs é E.xs), so that

d
ds

m((E.xs é E.xs)ij)=−m(C(E.x i
s, E.x j

s)). (3.18)

Formula (3.11) finally follows from the computation, recalling (3.6),

C(E.x i
s, E.x j

s)(x)= C
n

k=1
(ExUsXk(x) é ExUsXk(x))ij. (3.19)

This concludes the proof of Proposition 3.2.
Proposition 3.2 immediately implies the

Corollary 3.3. Suppose that the hypothesis of Proposition 3.2 are
satisfied for all t \ 0. Suppose in addition that

lim
t Q .

Ct=m(x é x) − m(x) é m(x) — F, (3.20)

in L1(Rd, dm). Then,

F=F
.

0
ds C

n

k=1
m(E.UsXk(.) é E.UsXk(.)). (3.21)

Expression (3.21) for the covariance matrix of a stationary state is the
basic formula that we shall use to develop a perturbation expansion in the
next section. Since both sides of (3.21) involve an averaging with respect
to m, it is not clear at first sight how informations on m can be extracted
from (3.21). We observe, however, that in the case of a linear drift X0 and
constant vector fields Xk, k=1,..., n, all expectations may be dropped and
(3.21) becomes

Flinear=F
.

0
ds Us

1 C
n

k=1
Xk é Xk

2 UT
s . (3.22)
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One thus recovers the standard formula for the covariance of the stationary
state of a linear stochastic equation with constant diffusion coefficients. As
we shall see in the next section, it is possible to iterate this simple observa-
tion in order to begin a perturbation expansion.

Another feature of formula (3.10) is to provide a link between the
covariance matrix Ct and the so-called Malliavin matrix. The Malliavin
matrix associated to Eq. (3.1) at time t reads, in the normalization of
ref. 10,

Mt=F
t

0
ds C

n

k=1
UtVsXk(xs) é UtVsXk(xs), (3.23)

where Vs is the inverse matrix of Us. An easy computation reveals that
m(E.Mt) can be expressed in a form closely related to (3.10), namely,

m(E.Mt)=F
t

0
ds C

n

k=1
m(E.(UsXk(.) é UsXk(.))). (3.24)

Indeed, we first observe that for s \ 0 fixed, Y t
s — UtVs satisfies Y s

s=1 and

dY t
s=DX0(xt) Y t

s dt+ C
n

k=1
DXk(xt) Y t

s dwk(t) (3.25)

for t \ s. Comparing with (3.8) yields that Y t
s=Y t

s(xs(x, w[0, s]), w[s, t])
has the same P-distributions as Ut − s(xs(x, w[0, s]), w̄[s, t]), where w̄(y)=
w(y) − w(s) for y \ s. Furthermore, for x fixed the map w W Y t

s(x, w[s, t])
is w[0, s]-independent. Since (x, w) W Y t

s(x, w) Xk(x) é Y t
s(x, w) Xk(x) is

measurable, one therefore may use the Markov property of xt to write,

Ex(Y t
s(xs) Xk(xs) é Y t

s(xs) Xk(xs))

=Ex(Ey=xs
(Ut − s(y) Xk(y) é Ut − s(y) Xk(y))). (3.26)

Identity (3.24) then follows by using the invariance of the measure m and
changing variables in the integral over s in (3.23). As a consequence,
Proposition 3.2 provides a lower bound on the expectation of the Malliavin
matrix.3

3 The order relation is defined in the following way. For two matrices X1, X2, we say that
X1 \ X2 whenever X1 − X2 is a positive definite matrix.

Corollary 3.4. One has

m(Ct) [ m(E.Mt). (3.27)
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Proof. The inequality simply follows from (3.10), (3.24), and the
matrix

Ex[(UsXk(x) − ExUsXk(x)) é (UsXk(x) − ExUsXk(x))] (3.28)

being positive definite.

4. PERTURBATIVE ANALYSIS OF THE NONEQUILIBRIUM

ANHARMONIC CHAIN

We shall analyse the effect of adding an anharmonic perturbation to a
(slightly) modified version of the model treated by Rieder et al. (13) We con-
sider the case of a harmonic chain with fixed ends to which one adds an
anharmonic on-site potential, i.e., we set in (2.1),

U(x)=1
2 w2x2 and V=1

2 w2ox2+1
4 lx4. (4.1)

The model considered in ref. 13 has o=0 but the computation of the
covariance of the stationary state is very similar and the result is given
below. We write the equations of motions (2.2)–(2.5) under the matrix
form,

Rdq
¯

dp
¯

S=b R q
¯
p
¯

S dt − l R 0

N(q
¯

)
S dt+R 0

dw
S (4.2)

with N(q
¯

) and dw the vectors in RN given by Ni(q
¯

)=q3
i and dwi=

d1i `2ckT1 dwl+dNi `2ckTN dwr, and

b=R 0 1

− go − a
S (4.3)

where go and a are N × N matrices given by (go)ij=w2((2+o) dij − dij+1

− dij − 1) and aij=cdij(d1j+dNj). Above, 1 denotes the unit matrix and 0
the zero matrix or vector, as is clear from the context. We note that the
stochastic terms in (4.2) are given by constant vector fields, namely, in the
notation of Section 3,

Xk=R 0

dk

S where (dk)j=dkj `2ckTk, (4.4)
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for k=1, N. In particular, the coefficients aij involved in the generator L
are constant. They are given by

C
k=1, N

Xk é Xk=R0 0

0 D
S , (4.5)

where Dij=2ckdij(T1d1j+TNdNj). Furthermore, the linearized flow Ul
t of

(4.2) is given by

dUl
t =bUl

t dt − 3lCl(t) Ul
t dt, (4.6)

where

Cl(t)=R 0 0

vl(t) 0
S , (4.7)

with vl
ij(t)=dijq

2
i (t) and qi(t) the qi-component of the solution of (4.2) at

time t. Finally, we note that the matrix b in (4.2) has the property that all
its eigenvalues have strictly negative real part. A proof of this fact can be
found in ref. 11 modulo obvious modifications.

In order to study perturbatively the SNS of our chain, we would like
to use the identity (3.21). However, some of the hypothesis of Corollary 3.3
related to the invariant measure are not known to hold for Eq. (4.2) when
l > 0. ( The case l=0 has been covered in ref. 13.) Although from a
mathematical point of view, this is not a mere technical problem, we will
assume that these hypothesis hold, see Assumption 4.1 below and the
remark that follows. On the other hand, Assumption 3.1, i.e., the existence
of strong solutions and their moments, follows from standard techniques
and we briefly discuss it now. We first note that for l > 0, the function
H2 (q

¯
, p
¯

)=2N+H(q
¯

, p
¯

), with H the Hamiltonian given by (2.1) and (4.1),
satisfies

H2 (q
¯

, p
¯

) \ C(1+||q
¯

||2+||p
¯

||2), (4.8)

for some C > 0 and all (q
¯

, p
¯

) ¥ R2N. Thus, H2 is a C2(R2N) confining func-
tion. Furthermore, one computes

(LH2 )(q
¯

, p
¯

)=−c(p2
1+p2

N)+2ck(T1+TN), (4.9)

which implies that LH2 is uniformly bounded by above. A classical result,
see, e.g., ref. 8, Theorem 4.1, then ensures for all initial conditions
(q
¯

, p
¯

) ¥ R2N the existence of a unique global strong solution to (4.2).
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Regarding the bounds (3.3), they are an immediate consequence of the
following a priori bound. For any h [ (2k max{T1, TN})−1, one has

E(q
¯

, p
¯

)[ehH(q
¯ t, p

¯ t)] [ e2ckh(T1+TN) t ehH(q
¯

, p
¯

). (4.10)

Bound (4.10) can be obtained in a similar way as in the proof of
Lemma 3.5 in ref. 12. However, the existence of a unique invariant measure
for (4.2) is still an open problem. We thus introduce the following

Assumption 4.1. The finite time truncated two-point correlation
function of the process defined by (4.2) converges to the covariance matrix
of a unique stationary measure ml in L1(R2N, dml)-norm. Furthermore, the
decay properties of ml are such that E(q

¯
, p
¯

)[(q
¯

t, p
¯

t)], LE(q
¯

, p
¯

)[(q
¯

t, p
¯

t)], and
E(q

¯
, p
¯

)[Ul
t ] belong to L2(R2N, dml).

Remark. The uniqueness of the invariant measure is proved in
refs. 4 and 12 for a large class of anharmonic chains. The invariant
measure has a smooth density with exponential decay and is shown to be
mixing.4 An important restriction is that the potential U must not grow

4 In ref. 12, the result is actually stronger. The convergence to the unique invariant measure is
shown to be exponential.

asymptotically slower than V, and thus Eq. (4.2) does not fall into the class
covered in refs. 4 and 12. However, as is argued in ref. 12, the fact that the
on-site potential grows faster than the nearest-neighbour interaction and
the existence of breathers for the deterministic dynamics should not affect
the ergodic properties of the measure except for the rate of convergence.
Although we could consider a similar anharmonic chain with an additional
quartic term in the nearest-neighbour interaction, the equations that one
then needs to solve, see below, are computationally more involved.
Furthermore, restricting to (4.2) will allow us to compare our results to the
usual lf4 expansion when the temperatures of the two baths are equal.

Provided Assumption 4.1 holds, let Fl denote the covariance matrix of
the unique stationary state of Eq. (4.2) and express it according to (3.21) as

Fl=F
.

0
dt C

k=1, N
ml(E.Ul

t Xk é E.Ul
t Xk). (4.11)

We first briefly review the harmonic case l=0. As mentioned in Section 3,
one obtains from (4.11)

F0=F
.

0
dt ebt DebTt, (4.12)
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where

D= C
k=1, N

Xk é Xk=R0 0

0 D
S , (4.13)

with Dij=2ckdij(T1d1j+TNdNj). Since the eigenvalues of b have strictly
negative real part, the integral in (4.12) is convergent and it follows from
integrating by parts in bF0 that F0 must satisfy the equation

bF0+F0bT=−D. (4.14)

The unique solution of this equation has been explicitly derived in ref. 13.
It is given by

F0=R F0
x F0

z

− F0
z F0

y

S (4.15)

where, denoting T=T1+TN
2 , g=T1 − TN

2T , and Go=w−2go,

F0
x=

kT
w2 (G−1

o +gX0), (4.16)

F0
y=kT(1+gY0), (4.17)

F0
z =

kT
c

gZ0, (4.18)

and

X0=R
f1 f2 fN − 2 fN − 1 0
f2 Î Î Î Î − fN − 1

f3 Î Î Î Î

Î Î Î Î

Î Î Î

fN − 1 Î Î − f2

0 − fN − 1 − f2 − f1

S , (4.19)

Y0
ij=dij(di1 − diN) − nX0

ij, (4.20)
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Z0=R
0 f1 f2 fN − 2 fN − 1

− f1 z z z fN − 2

− f2 z z z z

z z z z

z z z f2

z z f1

− fN − 1 − f2 − f1 0

S . (4.21)

Above, n=w
2

c2 and the quantities fj, 1 [ j [ N − 1, satisfy the equation

C
N − 1

j=1
(G (N − 1)

n+o )ij fj=d1i, (4.22)

where G (k)
n+o denotes the k-square matrix given by (G (k)

n+o)ij=(2+n+o) dij −
di, j+1 − di, j − 1. The solution of (4.22) is given by

fj=
sinh(N − j) a

sinh Na
, (4.23)

with a defined by cosh a=1+(n+o)/2. Hence, one has for large N and
fixed j the asymptotic formula fj=e−aj. In the context of SNS, one usually
defines the temperature to be the average kinetic energy, i.e., in our case,

Ti=(F0
y)ii. (4.24)

It is easy to see that the above solution yields an exponentially flat profile
in the bulk of the chain.

We now turn to the first-order perturbation of the anharmonic chain.
Below, all derivatives with respect to l at l=0 are to be understood as
derivative from the right. We first introduce our second assumption on the
process solution of (4.2).

Assumption 4.2. The invariant measure ml is absolutely continuous
with respect to the Lebesgue measure. As a function of l, its density rl(x)
is C. in an interval [0, l+) for all x and some l+ > 0.

Remark. At least in cases where uniqueness of the invariant measure
has been established, the proof of Assumption 4.2 should follow from an
analysis similar to the ones developed in refs. 5 or 15 to prove smoothness
of the probability transitions in a parameter of the related stochastic
differential equations. We postpone the proof of this fact to a future
publication.
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To derive an expression for F1 — d
dl

Fl|l=0, we compute from (4.11)

F1=
d
dl

Fl|l=0 (4.25)

=m1 1F
.

0
dt C

i=1, N
E.U0

t Xi(.) é E.U0
t Xi(.)2

+m0 1F
.

0
dt C

i=1, N
E.

d
dl

Ul
t |l=0 Xi(.) é E.U0

t Xi(.)2+tr., (4.26)

and observe that the first term vanishes because m1 — d
dl

ml|l=0 integrates
constants to zero. In order to compute the last terms, we first evaluate
Wt — d

dl
Ul

t |l=0. Deriving with respect to l on both sides of Eq. (4.6), we get

dWt=bWt dt − 3C0(t) U0
t dt, (4.27)

from which it follows that, since W0=0,

Wt=−3 F
t

0
ds eb(t − s)C0(s) ebs. (4.28)

Inserting (4.28) in (4.26), we obtain, using in addition the invariance of m0,

F1= − 3 F
.

0
dt F

t

0
ds C

i=1, N
eb(t − s)NebsXi é ebtXi+tr., (4.29)

= − 3 F
.

0
dt F

t

0
ds eb(t − s) Nebs DebTt+tr., (4.30)

where D is given by (4.13) and

N=m0(C0(0))=R 0 0

diag(F0
x) 0

S . (4.31)

Exchanging the integrations over t and s and changing variables leads to

F1=−3 F
.

0
dt ebtN 1F

.

0
ds ebs DebTs2 ebTt+tr., (4.32)

which, with (4.12), finally yields,

F1=−3 F
.

0
dt ebt(NF0+F0NT) ebTt. (4.33)
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The method used to derive the above equation will also provide the
equations for the next orders of the perturbation expansion. However,
obtaining them concretely requires some more work and we reserve that
part and the general Feynman rules for a further publication. We note that
integrating by parts in (4.33) yields the equation for F1

bF1+F1bT=3(NF0+F0NT). (4.34)

In Section 6, we will derive an explicit expression for F1 and thus for the
first order correction to the heat current and temperature profile. It turns
out to be easier to do so by solving Eq. (4.34) rather than by using (4.33).
In the next section, we first make a few preliminary remarks about equa-
tions of the form (4.34).

5. SOLVING THE EQUATION FOR THE FIRST ORDER

The symmetry properties of the inhomogeneous term in Eq. (4.34) will
play a special role. We will need to consider symmetry properties both with
respect to the diagonal and to the cross-diagonal.

Notation. For a K-square matrix M, we denote by MC the transpose
of M with respect to the cross-diagonal, namely, (MC)ij=MK+1 − j, K+1 − i.

Definition. We call a square matrix M c-symmetric or c-antisymme-
tric if MC=M or, respectively, MC=−M. Denoting

J=R0 1

1 0
S , (5.1)

we call a 2N-square matrix M CT-symmetric or CT-antisymmetric if
MC=JMJ or, respectively, MC=−JMJ.

We first list a few properties of equations of the form (4.34).

Lemma 5.1. Let b as above and H a 2N-square matrix. One has:

(a) The unique solution of the equation

bF+FbT=H (5.2)

is given by

F=−F
.

0
dt ebt HebTt. (5.3)
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(b) If H is CT-symmetric or CT-antisymmetric, then F is CT-sym-
metric or, respectively, CT-antisymmetric.

(c) If H is of the form

H=R0 f
f f

S , (5.4)

then the solution of (5.2) is of the form

F=R X Z

− Z Y
S . (5.5)

Proof. Point (a) follows from the matrix b having all its eigenvalues
with strictly negative real part. Indeed, this property implies that the
operator F W bF+FbT is invertible, and integrating by part in bF reveals
that (5.3) is the unique solution of (5.2). Point (c) is obvious, whereas (b)
follows from the identity JbCJ=bT and uniqueness of the solution of (5.2).

Lemma 5.1 implies in particular that F1 is the unique solution of
(4.34) and is of the form

F1=R F1
x F1

z

− F1
z F1

y

S . (5.6)

In particular, it follows from (5.6) and F1 being symmetric that F1
z is anti-

symmetric. In order to find an expression for the solution of Eq. (4.34), we
decompose the inhomogeneous term on the RHS of (4.34) into powers of g

and solve the equation separately for each case. One has

3(NF0+F0NT)=
3k2T2

w4 (H0+gH1+g2H2), (5.7)

where, cf. (4.15)–(4.18) and (4.31),

H0=R 0 G−1
o V0

V0G−1
o 0

S , (5.8)

H1=R 0 X0V0+G−1
o V1

V1G−1
o +V0X0 cn[V0, Z0]

S , (5.9)

H2=R 0 X0V1

V1X0 cn[V1, Z0]
S , (5.10)
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with

V0 — diag(G−1
o ), V1 — diag(X0). (5.11)

In the sequel, we will denote (V0)ij=dij gi, where gi=(G−1
o )ii read

gi=
sinh iā
sinh ā

sinh(N+1 − i) ā

sinh(N+1) ā
, (5.12)

with ā defined by cosh ā=1+o/2. Writing

F1=
3k2T2

w4 (F1
0+gF1

1+g2F1
2), (5.13)

one thus obtains that F1
l , l=0, 1, 2, is the unique solution of

bF1
l +F1

l bT=H l. (5.14)

In order to scale out the constants in b, we denote for l=0, 1, 2,

F1
l =R

1
w2 X l

1
c Z l

− 1
c Z l Yl

S , (5.15)

together with

R=c−1a, Go=w−2go, (5.16)

namely, Rij=dij(d1j+dNj) and (Go)ij=(2+o) dij − dij+1 − dij − 1. The zero
order term in (5.13) is just the first-order perturbation of the anharmonic
chain at the equilibrium T1=TN. Inserting (5.15) into (5.14) for l=0 yields
the equivalent system of equations for X0, Y0, and Z0

Y0=X0Go+Z0R+G−1
o V0, (5.17)

[Go, Z0]= −
1
n

{R, Y0}, (5.18)

with the requirement that X0, Y0 are symmetric and Z0 is antisymmetric.
One easily checks that its unique solution is given by

X0=−G−1
o V0G−1

o , Y0=0, Z0=0, (5.19)

thus recovering, as expected, the first-order correction of the lf4 model.
Proceeding similarly for F1

1 and F1
2, one finds that X1, Y1, Z1 solve

1406 Lefevere and Schenkel



Y1=X1Go+Z1R+(X0V0+G−1
o V1), (5.20)

[Go, Z1]= −
1
n

{R, Y1}+[Z0, V0], (5.21)

whereas X2, Y2, Z2 solve

Y2=X2Go+Z2R+X0V1, (5.22)

[Go, Z2]= −
1
n

{R, Y2}+[Z0, V1]. (5.23)

Furthermore, using the c-symmetry properties of the solution X0 and Z0

of the harmonic case, cf. (4.19) and (4.21), one easily checks that H1 is
CT-antisymmetric, whereas H2 is CT-symmetric. This implies that X1, Y1

are c-antisymmetric and Z1 is c-symmetric, whereas X2, Y2 are c-symmetric
and Z2 is c-antisymmetric. This simply reflects the fact that changing the
sign of g corresponds to interchanging the reservoirs at the ends of the
chain.

In the next section, we will derive explicit expressions for the solutions
of the above equations. To this end, we will need the following identities.
Let X be a solution of

[Go, X]=U, (5.24)

with U a given matrix. It thus follows from [Go, X]ij=Uij that

X i, j+1 − X i − 1, j=Uij+(X i+1, j − X i, j − 1), (5.25)

where matrix elements with an index equals to zero or N+1 are set to zero.
Let us first consider X antisymmetric. In particular, X is entirely deter-
mined by its elements X ij with i < j and satisfies Xj+1, i − Xj, i − 1=
−(X i, j+1 − X i − 1, j). For i [ j, applying (5.25) recursively j − i times thus
leads to

X i, j+1 − X i − 1, j=
1
2

C
j − i

l=0
Ui+l, j − l. (5.26)

This gives all matrix elements X1j, 1 < j [ N. Applying (5.26) recursively
i − 1 times finally leads to

X ij=
1
2

C
i − 1

k=0
C

j − i − 1

l=0
Ui+l − k, j − l − k − 1, (5.27)
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for i, j such that i < j. Proceeding similarly, one obtains for a c-antisym-
metric matrix X satisfying (5.24),

X ij=
1
2

C
i − 1

k=0
C

N − i − j

l=0
Ui+l − k, j+l+k+1, (5.28)

for i+j [ N. If X is both antisymmetric and c-antisymmetric, one iterates
identity (5.26) N+1 − i − j times to obtain

X ij=−
1
4

C
j − i − 1

k=0
C

N − i − j

l=0
Ui+l+k+1, j+l − k, (5.29)

for i < j and i+j [ N. Finally, proceeding similarly but without assuming
any symmetry properties, one derives an expression for X depending both
on U and the first line of X,

X ij= C
i

k=1
X1, i+j − 2k+1 − C

i − 1

k=1
C
i − k

l=1
Ui+1 − k − l, j − k+l, (5.30)

for 1 < i [ j and i+j [ N+1. Formula (5.30) will be used later for X
symmetric and c-symmetric. It reflects the fact that in such cases, the solu-
tion of (5.24) is determined up to a polynomial P(G), that is up to N
independent variables which can be supplemented as the first line of X.

6. THE FIRST-ORDER CORRECTION

In this section, we derive an expression for the first-order correction to
the heat current and temperature profile.

We find that the part corresponding to the heat current is uniformly
bounded in N. Regarding the temperature profile, the part of the solution
proportional to g is exponentially decaying in the bulk of the chain when-
ever o > 0. The decay rate is slower than in the purely harmonic case. For
o=0, the profile proportional to g is linear in the bulk of the chain and we
compute its slope explicitly. However, as mentioned in the Section 1, the
sign is ‘‘wrong,’’ namely, the linear profile has the lowest temperature close
to the hottest bath and the highest temperature close to the coldest bath.
The same type of phenomenon is present for o > 0, in the sense that the
profile is not monotonic, see Fig. 1. Moreover, we observe that the part
proportional to g2 gives a significant contribution resulting in a shift of the
temperature at the middle point of the chain, see Fig. 2. The temperature
at this point is no more the arithmetic mean of the baths temperatures.
Although surprising, this phenomenon is observed in numerical studies of
certain anharmonic chains, see refs. 1 and 9.
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Fig. 1. Contribution of Y1 to the temperature profile (n=1, N=100).

6.1. First-Order Correction to the Heat Current

In our model, the heat current in the SNS is given by (Fl
z )i, i+1. The

first-order correction will thus be given in terms of, cf. (5.13) and (5.15),

F1
z =

3k2T2

cw4 (Z0+gZ1+g2Z2). (6.1)

Fig. 2. Contribution of Y2 to the temperature profile (n=1, o=0, N=100).
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By (5.19), Z0 does not contribute and one easily checks that for
1 [ i [ N − 1,

(Z2)i, i+1=0. (6.2)

That is, Z2 does not contribute to the current either. Indeed, recall that Z2

is antisymmetric and satisfies Eq. (5.23). Since {R, Y2} is a bordered matrix
and [Z0, V1] is zero on the diagonal, one obtains by using formula (5.27)
that

−
1
n

(Y2)11=(Z2)12=(Z2)23= · · · =(Z2)N − 1, N. (6.3)

This leads to (6.2), since (Z2)12=−(Z2)N − 1, N by c-antisymmetry of Z2. We
note for later use that this also implies

(Y2)11=0. (6.4)

It thus remains to consider the contribution of Z1. Since Z1 is antisymme-
tric, one obtains from (5.21) that

Z1=Z+Z, (6.5)

where Z and Z are given by formula (5.27) with U replaced by − 1
n {R, Y1}

and, respectively, [Z0, V0]. We first observe that {R, Y1} is a bordered
symmetric matrix, so that formula (5.27) yields

Z=R
0 j1 j2 jN − 2 jN − 1

− j1 z z z jN − 2

− j2 z z z z

z z z z

z z z j2

z z j1

− jN − 1 − j2 − j1 0

S , (6.6)

where the quantities j1,..., jN − 1 are related to the first line of Y1, namely,
for j=1,..., N − 1,

njj=−(Y1)1j. (6.7)

Furthermore, [Z0, V0] having zero diagonal implies that Zi, i+1=0. One
therefore obtains

(Z1)i, i+1=Z i, i+1=j1. (6.8)
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In order to compute the vector j ¥ RN − 1, one considers the first line of
Eq. (5.20) for Y1 into which one substitutes identity (6.7). We first need to
compute X1. Equation (5.20) and the symmetry properties of X1, Y1 and
Z1 imply that X1 satisfies

[Go, X1]={R, Z1}+([X0, V0]+[G−1
o , V1]) (6.9)

={R, Z}+{R, Z}+([X0, V0]+[G−1
o , V1]). (6.10)

Since X1 is c-antisymmetric, it follows from (6.10) that

X1=X+X, (6.11)

where X and X are given by formula (5.28) with U replaced by {R, Z}
and, respectively, {R, Z}+([X0, V0]+[G−1

o , V1]). Using that {R, Z} is a
bordered antisymmetric matrix, one obtains from (5.28) and (6.6) that

X=R
j1 j2 j3 jN − 1 0
j2 Î Î Î Î − jN − 1

j3 Î Î Î Î

Î Î Î Î

Î Î Î

jN − 1 Î Î − j2

0 − jN − 1 − j2 − j1

S . (6.12)

Equation (5.20) now reads

Y1=XGo+ZR+W, (6.13)

with

W=XGo+ZR+(X0V0+G−1
o V1), (6.14)

and since (XGo+ZR)1j=(GoX1 · )j=(G (N − 1)
o j)j for j=1,..., N − 1, where

G (k)
o denotes the k-square version of Go, it follows from (6.7) that

G (N − 1)
n+o j=−w, (6.15)

where w ¥ RN − 1 is given by wj=W1j, j=1,..., N − 1. Therefore, one finally
obtains, recalling that g=T1 − TN

2T ,

(F1
z )i, i+1=

3k2T(T1 − TN)
2cw4 j1, (6.16)
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with j given by j=−[G (N − 1)
n+o ]−1 w. As (F1

z )i, i+1 represent the first-order
correction to the current, it is consistent to see that they are all equal to
each other.

Before turning to the first-order correction of the temperature profile,
we study the behaviour of j1 with N. We first note that X solves the equa-
tion [Go, X]={R, Z}, as is easily checked from (6.6) and (6.12). This
implies that X solves, cf. (6.10) and (6.11),

[Go, X]={R, Z}+([X0, V0]+[G−1
o , V1]), (6.17)

which in turn implies, by using in addition the symmetry properties of the
matrices involved in (6.14), that W is c-antisymmetric and satisfies the
equation

[Go, W]=GoZR+RZGo+(GoX0V0 − V0 X0Go). (6.18)

Hence, W1N=0 and it follows from formula (5.28) that

w=w (1)+w (2), (6.19)

where, for 1 [ j [ N − 1,

w (1)
j =

1
2

C
N − j

l=1
(GoZR+RZGo)l, l+j, (6.20)

w (2)
j =

1
2

C
N − j

l=1
(GoX0V0 − V0 X0Go)l, l+j. (6.21)

We first consider w (1). We note that GoZR+RZGo is a bordered c-sym-
metric matrix and that Z is c-symmetric since both Z1 and Z are c-sym-
metric. One thus obtains from (6.20)

w (1)=G (N − 1)
o Z2 , (6.22)

where, for 1 [ j [ N − 1,

Z2j=Z1, j+1. (6.23)

In order to compute Z2 , we note that Z solves the equation [Go, Z]
=− 1

n {R, Y1}, as is easily checked from (6.6) and (6.7). Therefore,
Z solves, cf. (5.21) and (6.5),

[Go, Z]=[Z0, V0], (6.24)
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and since Z is antisymmetric, as both Z1 and Z are, it follows from (4.21),
(V0)ij=dij gi, and formula (5.27), that for 2 [ j [ N,

Z1j=
1
2

C
j − 1

l=1
(gj − l − gl) fj − 2l, (6.25)

with the convention f−k=−fk, 0 [ k [ N − 1. Thus, w (1) is given by (6.22)
with Z2 ¥ RN − 1 given by

Z2j=
1
2

C
j

l=1
(gj+1 − l − gl) fj+1 − 2l. (6.26)

We next consider w (2). We first note that

GoX0V0 − V0X0Go=(Gn+oX0V0 − V0X0Gn+o)+n(V0X0 − X0V0), (6.27)

and compute, using (4.19), (4.22), and (V0)ij=dij gi, that for i [ j,

(Gn+oX0V0 − V0X0Gn+o)ij=d1i gjfj − 1+dNj gifN − i. (6.28)

Therefore,

(GoX0V0 − V0X0Go)ij=di1 gjfj − 1+djN gifN − i+n(gi − gj) fi+j − 1, (6.29)

with the convention fN+k=−fN − k, 0 [ k [ N. One thus finally obtains for
w (2) ¥ RN − 1, using in addition that gN − j=gj+1,

w (2)
j =gj+1fj+

n

2
C

N − j

l=1
(gl − gj+l) fj − 1+2l. (6.30)

Using (6.15), (6.19), (6.22), (6.26), (6.30), and the fact that the fj’s decay
exponentially, it is easy to see that j1 is uniformly bounded in N.

6.2. First-Order Correction to the Temperature Profile

We now analyse the first-order correction to the temperature profile. It
is given by (F1

y)ii where, cf. (5.13) and (5.15),

F1
y=

3k2T2

w4 (Y0+gY1+g2Y2). (6.31)
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By (5.19), Y0 does not contribute to F1
y. In order to compute the diagonal

of Y1, we use the fact that Y1 is c-antisymmetric and satisfies the equation,
as a consequence of (5.20),

[Go, Y1]=GoZ1R+RZ1Go+(GoX0V0 − V0X0Go). (6.32)

Using (5.28), (6.29), and the fact that g2i=gN − 2i+1, one thus obtains for
1 [ i [ [N/2], where [x] denotes the largest integer smaller or equal to x,

(Y1)ii=(G (N − 1)
o Z4 1)2i − 1+1g2i f2i − 1+

n

2
C

N − i

l=i
f2l C

i − 1

k=0
(gl − k − gl+k+1)2 , (6.33)

where Z4 1 ¥ RN − 1 is given by (Z4 1)j=(Z1)1, j+1. Since the fj decay exponen-
tially fast with rate a, see (4.23), it follows that all terms but the first give
an exponentially flat contribution to (Y1)ii. We thus write, and will adopt a
similar notation in the sequel,

(Y1)ii=(G (N − 1)
o Z4 1)2i − 1+O(e−aj). (6.34)

In order to compute the dominant term in the above expression, we first
use that Z4 1=j+Z2 where Z2 is given by (6.26), and G (N − 1)

n+o j=−w where
w=G (N − 1)

o Z2+w (2) with w (2) given by (6.30), to obtain Z4 1=(G (N − 1)
n+o )−1 ×

(nZ2 − w (2)) and thus

(Y1)ii=((G (N − 1)
n+o )−1 G (N − 1)

o (nZ2 − w (2)))2i − 1+O(e−aj). (6.35)

It follows from the expression (6.21) for w (2) and properties of G (N − 1)
o ,

G (N − 1)
n+o , and their inverse, that the second term gives an exponentially flat

contribution to the temperature profile. To compute the remaining term
y — n(G (N − 1)

n+o )−1 G (N − 1)
o Z2 , we first note that it satisfies

G (N − 1)
n+o y=nG (N − 1)

o Z2 . (6.36)

We next compute G (N − 1)
o Z2 . In the expression (6.26) for Z2 , changing the

summation index to k with 2k=j+1 − 2l if j is odd and 2k=j − 2l if j is
even, one obtains, using in addition the symmetry properties of gi, that for
j \ 2

Z2j=˛ C
j − 1

2

k=1
(gj+1

2 +k
− gj+1

2 − k
) f2k if j is odd,

C
j
2

k=1
(g j

2+k
− g j

2+1 − k
) f2k − 1 if j is even.

(6.37)
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For j=1, Z21=0. Computing the differences of g’s arising in the above
expression leads to

Z2j=
sinh(N − j) ā

sinh(N+1) ā
C

j − 1+[̄

2

k=1

sinh(2k − [̄) ā

sinh ā
f2k − [̄, (6.38)

where [̄=0 if j is odd and [̄=1 if j is even. Hence, Z2 can be rewritten as

Z2j=r[̄

sinh(N − j) ā

sinh(N+1) ā
+O(e−aj), (6.39)

where the constants r0 and r1 are given by

rs= C
[N/2]

k=1

sinh(2k − s) ā

sinh ā
f2k − s, s=0, 1. (6.40)

A straightforward computation finally leads to, recalling that cosh ā=
1+o/2,

(G (N − 1)
o Z2 )j=(−1) [̄+1 (2+o)(r1 − r0)

sinh(N − j) ā

sinh(N+1) ā
+C1d1j+O(e−aj),

(6.41)

where C1 is a constant that depends on N and ā only. It thus remains to
compute the vector y given by Eq. (6.36). To this end, we note that a vector
of the form (6.41) is almost an eigenvector of G (N − 1)

n+o . More precisely, one
has for v with vj=(−1) [̄+1 sinh(N − j) ā,

(G (N − 1)
n+o v)j=(4+n+2o) vj+d1j sinh Nā. (6.42)

Therefore, writing

yj=(−1) [̄+1 n(2+o)(r1 − r0)
(4+n+2o)

sinh(N − j) ā

sinh(N+1) ā
+rj, (6.43)

and inserting in (6.36) yield for r the equation (G (N − 1)
n+o r)j=C2d1j+O(e−aj)

with C2 a constant depending on N and ā, cf. (6.41) and (6.42), whose
solution reads, by using (4.22),

rj=C2fj+O(e−aj). (6.44)
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Hence, r is an exponentially decaying correction to y as given by (6.43).
Finally, since (Y1)ii=y2i − 1 for 1 [ i [ [N/2], we obtain from (6.43),

(Y1)ii=−
n(2+o)(r1 − r0)

(4+n+2o)
sinh(N+1 − 2i) ā

sinh(N+1) ā
+O(e−2ai). (6.45)

Since Y1 is c-antisymmetry, (6.45) also gives the elements (Y1)ii for
[N/2]+1 [ i [ N. In particular, since cosh ā=1+o/2, it follows that the
contribution of Y1 to the temperature profile is exponentially flat in the
bulk of the chain whenever o > 0. When o=0, on the other hand, ā=0
and Y1 gives a linear profile. In the limit N Q ., it is straightforward to
compute that for o=0, r1 and r0 are given by

r0=
1

2 sinh2 a
and r1=

cosh a

2 sinh2 a
, (6.46)

with a defined by cosh a=1+n/2. One thus has r1 − r0=1/(4+n) and the
temperature profile for o=0 is given by

(Y1)ii=
2n

(4+n)2
1 2i

N+1
− 12+O(e−2ai). (6.47)

The temperature profile is linear, but oriented in the ‘‘wrong’’ direction.
Indeed, if for instance T1 > TN, then one obtains from (6.31), which invol-
ves a multiplication by g=(T1 − TN)/(T1+TN), that the slope is positive.

We next consider the contribution of Y2 to the temperature profile.
Since Y2 is c-symmetric, it will introduce, if nonzero, a global shift in the
temperature profile. As we shall see, this is indeed the case. To compute
the diagonal (Y2)ii, we proceed as for Y1. We first recall that (Y2)11=0,
cf. (6.4), and note that Y2 also satisfies,

[Go, Y2]=GoZ2R+RZ2Go+(GoX0V1 − V1X0Go). (6.48)

Denoting by k the first line of Y2, i.e.,

ki — (Y2)1i, (6.49)

one uses (5.30) to obtain from (6.48) the following expression, for i \ 2 and
2i [ N+1,

(Y2)ii= C
i − 1

k=1
k2k+1 − C

i − 1

k=1
C
k

l=1
Uk − l+1, k+l, (6.50)
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where k1=(Y2)11=0 has been used, and

U=GoZ2R+RZ2Go+(GoX0V1 − V1X0Go). (6.51)

Since Y2 is c-symmetric, (6.50) determines all diagonal elements (Y2)ii,
2 [ i [ N − 1. The first term on the RHS of (6.48) is a bordered matrix and
a straightforward computation yields

C
k

l=1
(GoZ2R+RZ2Go)k − l+1, k+l=(Goz)2k, (6.52)

where z denotes the first line of Z2, i.e.,

zi=(Z2)1i. (6.53)

The second term on the RHS of (6.51) is identical to the corresponding
term appearing in (6.18), with V0 replaced by the diagonal matrix (V1)ij=
dijf2i − 1. For 1 [ i [ j [ N, it is thus given by, cf. (6.29),

(GoX0V1 − V1X0Go)ij

=n(f2i − 1 − f2j − 1) fi+j − 1+di1f2j − 1fj − 1+djNf2i − 1fN − i, (6.54)

with the convention fN+k=−fN − k, 0 [ k [ N. Inserting (6.52) and (6.54)
into (6.50) leads to

(Y2)ii= C
i − 1

k=1
Dk (6.55)

where, for k \ 1 and 2k [ N − 1,

Dk=k2k+1 − (Goz)2k −1f2k − 1f4k − 1+nf2k C
k

l=1
(f2(k − l)+1 − f2(k+l) − 1)2 . (6.56)

One checks that |Dk | decays exponentially. First, recalling (4.23) and our
convention fN+k=−fN − k, 0 [ k [ N, this is clearly true of the last two
terms in (6.56). Next, an expression for the first line of Y2 can be obtained
from Eq. (5.23) by using that Z2 is c-antisymmetric. Formula (5.28) and
(Z2)k, k+1=0, cf. (6.2), imply that for 1 [ k [ [(N − 1)/2],

1
n

k2k+1=
1
2

C
k

n=1
f2n C

N − k − 1

l=k
(f2(l+n)+1 − f2(l − n)+1), (6.57)

Perturbative Analysis of Anharmonic Chains of Oscillators Out of Equilibrium 1417



with the convention fN+k=−fN − k, 0 [ k [ N. In particular, k2k+1 decays
exponentially. We finally compute z, the first line of Z2. One has
z1=zN=0 by antisymmetry and c-antisymmetry of Z2, and applying
formula (5.29) to Eq. (5.23) yields for 2 [ j [ N − 1

zj=
1
4

C
j − 1

n=1
fj − 2n C

N − j

l=1
(f2(l+n) − 1 − f2(j+l − n) − 1), (6.58)

with the conventions f−k=−fk and fN+k=−fN − k, 0 [ k [ N. Therefore,
one has for 2 [ i [ [(N+1)/2],

(Y2)ii=h+O(e−ai), (6.59)

where the constant h is given by

h=h1+nh2, (6.60)

with

h1= C
[ N − 1

2 ]

k=1
(2z2k+1 − (2+o) z2k − f2k − 1f4k − 1), (6.61)

h2= C
[ N − 1

2 ]

k=1

11
n

k2k+1 − f2k C
k

l=1
(f2(k − l)+1 − f2(k+l) − 1)2 . (6.62)

A straightforward, but lengthy, computation yields the following asymp-
totic formulas for large N,

h1=
cosh a(cosh a − 1 − o/2)

2ea sinh2 a sinh 3a
, (6.63)

h2= −
1

4 sinh2 a
1 1

cosh a
+

cosh a

ea sinh 3a
2 . (6.64)

Recalling that cosh a=1+(n+o)/2, one obtains

h=−
2n

(n+o)(2+n+o)(4+n+o)
. (6.65)

7. CONCLUSIONS

In the preceding sections, we have computed the first-order corrections
to the heat current and temperature profile in a weakly anharmonic chain
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of oscillators out of equilibrium. The main feature of the model we con-
sidered is that it satisfies Fourier law, according to various numerical
studies. In particular, the heat current decreases with the size of the system
as 1/N. This implies that for large N, the heat current is very different
from its value in the harmonic case, which is finite and independent of N. (13)

If Fourier law does hold whenever the anharmonicity parameter l is strictly
positive, one thus expects the heat current to develop a singularity at l=0
when N Q .. Our result shows that such a singularity does not manifest
itself in a first-order perturbative analysis. The computation of the second-
order correction to the current, which we reserve for a future publication,
displays a divergence proportional to N when o=0. In the massive case
o > 0, no such divergence seems to occur. In this respect, we note that to
our knowledge, no numerical simulations have been performed for very
long chains in a regime of weak anharmonicity. The question of whether
Fourier law holds for arbitrarily small values of l or in regimes of very
small temperature is at this point unclear, at least when o > 0, see, e.g.,
ref. 14.

On the other hand, all derivatives of the heat current at l=0 remain-
ing bounded in N would of course not preclude the chain from satisfying
Fourier law for finite l. The question of how much can be captured by
a perturbative analysis regarding the behaviour of the heat current as N
increases is delicate and concerns the convergence of the perturbation
expansion. At l=0, the heat current is not analytic. However, we believe
that the perturbation expansion may be Borel summable. Indeed, for the
model considered here, it is very reminiscent of the usual lf4 expansion, in
particular at equilibrium. Nevertheless, due to the singularity mentioned
above, one expects at best the radius of convergence to decrease as the
length of the chain increases.

Regarding the temperature profile, this issue is more delicate and it is
a priori conceivable that the physically expected profile would be given by a
perturbation expansion in l. In any case, the smoothness of the invariant
measure for a chain of finite length raises the question of how to interpret
our result, which displays a counterintuitive orientation for the profile at
first-order. There is indeed a priori no reason why the coldest oscillator
should be closer to the hottest bath and vice-versa. Besides, the tempera-
ture profile obtained by the numerical simulations of refs. 1 and 9 is as
expected, i.e., roughly linear and correctly oriented. Although those studies
have been performed with heat baths modelized by Nose–Hover thermo-
stats, whereas we consider Langevin couplings, it is doubtful that a partic-
ular choice of heat bath model would have such drastic consequences.

We note that the surprising behaviour we observe at first-order
already occurs in the harmonic case of the chain considered here, in the
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weaker sense that the exponentially flat profile is non-monotonic. (13) As in
ref. 13, we are at present unable to provide a satisfactory physical explana-
tion for this phenomenon. However, we believe it might be related to the
boundary conditions that are imposed on the chain and to the way it is
coupled to the heat baths. In ref. 11, Nakazawa studied a harmonic chain
with free ends (and o strictly positive in order to ensure existence of the
stationary state), as opposed to the fixed ends case considered here. The
temperature profile he obtained is not plagued by the ‘‘defect’’ observed in
the fixed ends case, namely, it is monotonic (and exponentially decaying).
A similar analysis as presented here can be performed for the model
studied by Nakazawa. It yields a first-order correction to the temperature
profile which is exponentially flat in the bulk of the chain and monotonic,
to be compared with the profile for o=1/10 in Fig. 1. This issue can only
be clarified by further work involving modifications of the boundary con-
ditions and coupling to the heat baths, in particular perturbative analysis
as well as numerical studies in regimes of very weak anharmonicity.
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